- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0000000002000000
- More
- Availability
-
20
- Author / Contributor
- Filter by Author / Creator
-
-
Abrams, Natasha_S (2)
-
Lu, Jessica_R (2)
-
Abe, Fumio (1)
-
Agarwal, Shrihan (1)
-
Bachelet, Etienne (1)
-
Barry, Richard (1)
-
Bennett, David_P (1)
-
Bhattacharya, Aparna (1)
-
Blaineau, Tristan (1)
-
Bond, Ian (1)
-
Di_Stefano, Rosanne (1)
-
Fujii, Hirosane (1)
-
Fukui, Akihiko (1)
-
Hirao, Yuki (1)
-
Hosek, Jr., Matthew_W (1)
-
Hundertmark, Markus_P_G (1)
-
Itow, Yoshitaka (1)
-
Jones, R_Lynne (1)
-
Khakpash, Somayeh (1)
-
Kirikawa, Rintaro (1)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract The Vera C. Rubin Legacy Survey of Space and Time will discover thousands of microlensing events across the Milky Way, allowing for the study of populations of exoplanets, stars, and compact objects. We evaluate numerous survey strategies simulated in the Rubin Operation Simulations to assess the discovery and characterization efficiencies of microlensing events. We have implemented three metrics in the Rubin Metric Analysis Framework: a discovery metric and two characterization metrics, where one estimates how well the light curve is covered and the other quantifies how precisely event parameters can be determined. We also assess the characterizability of microlensing parallax, critical for detection of free-floating black hole lenses. We find that, given Rubin’s baseline cadence, the discovery and characterization efficiency will be higher for longer-duration and larger-parallax events. Microlensing discovery efficiency is dominated by the observing footprint, where more time spent looking at regions of high stellar density, including the Galactic bulge, Galactic plane, and Magellanic Clouds, leads to higher discovery and characterization rates. However, if the observations are stretched over too wide an area, including low-priority areas of the Galactic plane with fewer stars and higher extinction, event characterization suffers by >10%. This could impact exoplanet, binary star, and compact object events alike. We find that some rolling strategies (where Rubin focuses on a fraction of the sky in alternating years) in the Galactic bulge can lead to a 15%–20% decrease in microlensing parallax characterization, so rolling strategies should be chosen carefully to minimize losses.more » « less
-
Lam, Casey_Y; Lu, Jessica_R; Udalski, Andrzej; Bond, Ian; Bennett, David_P; Skowron, Jan; Mróz, Przemek; Poleski, Radek; Sumi, Takahiro; Szymański, Michał_K; et al (, The Astrophysical Journal Letters)Abstract We present the analysis of five black hole candidates identified from gravitational microlensing surveys. Hubble Space Telescope astrometric data and densely sampled light curves from ground-based microlensing surveys are fit with a single-source, single-lens microlensing model in order to measure the mass and luminosity of each lens and determine if it is a black hole. One of the five targets (OGLE-2011-BLG-0462/MOA-2011-BLG-191 or OB110462 for short) shows a significant >1 mas coherent astrometric shift, little to no lens flux, and has an inferred lens mass of 1.6–4.4M⊙. This makes OB110462 the first definitive discovery of a compact object through astrometric microlensing and it is most likely either a neutron star or a low-mass black hole. This compact-object lens is relatively nearby (0.70–1.92 kpc) and has a slow transverse motion of <30 km s−1. OB110462 shows significant tension between models well fit to photometry versus astrometry, making it currently difficult to distinguish between a neutron star and a black hole. Additional observations and modeling with more complex system geometries, such as binary sources, are needed to resolve the puzzling nature of this object. For the remaining four candidates, the lens masses are <2M⊙, and they are unlikely to be black holes; two of the four are likely white dwarfs or neutron stars. We compare the full sample of five candidates to theoretical expectations on the number of black holes in the Milky Way (∼108) and find reasonable agreement given the small sample size.more » « less
An official website of the United States government
